
Aeroponics and Vertical Gardening:
Programming Activity: Digital Line Outputs

Hardware:

ü Sparkfun RedBoard Microcontroller*
ü A to MiniB USB cable
ü PC or Laptop (Windows, Mac OS, Linux)
ü Solid State Relay
ü Jumper wires
ü Small breadboard

*Any Arduino Uno device will work the same.

Objectives:

ü Work effectively in a cooperative learning environment
ü Explain the characteristics and function of the digital I/O channels on the Arduino
ü Download and install Arduino software on a Windows PC
ü Connect the Arduino device to the USB port on the computer
ü Initialize the Arduino device on the Windows PC
ü Connect the Arduino device to external devices via a solid state relay.
ü Write a simple program to control outputs using the following commands:

o const int
o setup()
o pinMode()
o loop()
o digitalWrite()
o delay()

Data Acquisition and Control Hardware

Sparkfun RedBoard Microcontroller
The Sparkfun RedBoard is an Arduino-type
microcontroller provides both analog and
digital connections through a series of pins
arranged along the left and right edges of the
device. The right side of the device provides
connection to 14 digital input/output (DIO)
channels. The right side of the device also
provides pins for use with R3 shields. The
left side of the device provides connection to
6 analog inputs, in addition to assorted power
inputs and outputs.

In this lesson, we will focus on the 14 DIO
channels located on the righthand side of the
microcontroller. These channels are
structured into two port registers, Port D and
Port B. Port D contains eight channels,
identified as digital pins 0 through 7, and Port
B contains 6 channels, identified as digital
pins 8 through 13. Each channel can be configured individually as an input or output, or
each port can be configured as a set of inputs or a set of outputs. When a program is run,
the DIO channels configure as programmed.

Solid State Relay
The DIO channels are limited to 5 volts (V) direct current (DC) with a maximum of 40
milliamps of current. This isn’t very much power, so additional circuitry is often
necessary to increase the voltage and amperage (A) to control higher-powered devices.
The Solid-State Relay provides this function in this activity.

The output of the solid-state relay can control any alternating current (AC) between 24 V
and 240 V, and up to 10 A. The relay is controlled by a 5 V to 24 V DC input, which is
convenient since our DIO channels have an output voltage of 5 VDC. We will use a DIO
channel to control the solid-state relay. Watch this video on how a basic relay works. A
solid-state relay produces the same effect, but uses special materials called
semiconductors instead of moving mechanical parts.

Connecting the RedBoard Device to a PC or Laptop
To program the RedBoard device to control
digital outputs, the device needs to be
connected to the PC with the USB cable. To
connect the PC, plug the smaller “MiniB” side
of the USB cable into the MiniB connector
located near the top right corner of the
RedBoard microcontroller. Then plug the
larger “A” side of the USB cable into a USB
port on the PC. The USB cable allows a
program written on the PC to be transferred to
the microcontroller. The USB cable can also
provide power to the board, although this is
not necessary if the device is connected to an
external power supply that provides 7 to 15
VDC, using the large power connector near
the top left-hand corner of the device. If an
external power supply is connected, the USB
cable is only needed to transfer a program to
the device, and can then be disconnected once
the transfer is complete.

Connecting the RedBoard to the Solid-State Relay

Several connections are required to connect
the device to the PC and to the solid-state
relay. Before continuing, watch this video on
how to use a breadboard. After watching the
video, find any pin on the RedBoard that is
labeled “GND” (ground). Insert one end of a
black jumper wire into the GND pin.

Next, find the DIO pin on the right-hand side
of the device labeled “2.” Connect one end of
a red jumper wire from Pin 2. It is important
that you do not use Pin 0 or Pin 1, since these
pins are connected to the USB serial
communication which may cause problems if
they are used for this type of application.

Now connect the other ends of the black and
red jumper wires to connection points on the
central section of the breadboard on separate
rows. Next, connect the solid-state relay to

the breadboard by connecting the red
(positive) wire to a point in the same
horizontal row as the red jumper wire
connecting Pin 2 on the RedBoard device.
Connect the black (negative) wire from the
solid-state relay to a point in the same
horizontal row as the black jumper wire
connecting the ground pin from the RedBoard
device.

In this configuration, when voltage is applied
to Pin 2 from the microcontroller, current will
travel through the red jumper wire, then
through the red wire to the relay via the
breadboard, activate the relay, and then
through the black wire back to the GND pin
on the RedBoard device via the breadboard,
thus making a complete circuit and activating
the solid-state relay in the process. You will
now be able to turn the relay on or off by
programming Pin 2 to turn on or off. When the relay turns on or off, any device
connected to the relay’s output will also turn on or off. Thus, when Pin 2 is on, any
device connected to the relay output will also turn on. Your setup should look very
similar to the image below:

Starting and Setting Up the Arduino Integrated Development Environment

Introduction
The Arduino integrated development environment (IDE) is a simple, yet powerful
application which allows the user to create programs for Arduino which utilize the C and
C++ programming libraries. The text-based language used in Arduino programming is
extremely useful for data acquisition and control. While Arduino has not yet seen a
particularly wide adoption in industry, the C and C++ programming languages are
heavily used in industry, so learning the Arduino programming language is useful
because it mimics these languages.

Installing Arduino Software and Initializing the RedBoard Device
To get the RedBoard device up and running, the latest software for Arduino Uno must be
downloaded and installed on a Windows PC. To download the most recent software
version, open a web browser and navigate to http://www.arduino.cc/en/main/software.
Locate the link to the Windows Installer and click the link. If you are using a Windows
10 PC, you can also find the “Arduino IDE” app in the Microsoft app store and install it
that way. Windows will open a dialog box asking what you want to do with the file.
Click “Save File.” Once the .exe file has been downloaded and saved, navigate to your
Downloads folder and open the file. Windows will ask you whether you want to allow
the program to make changes to your computer. Allow this action. The Arduino setup
utility will then open a dialog box requiring you to accept the license agreement. Click “I
Agree.” Follow the prompts to finish the installation of the Arduino software.

On some computer operating systems, you may also need to install Arduino drivers
separately. If your computer has trouble locating drivers, follow these instructions to
install them manually. Use the USB cable to connect the RedBoard device to the PC.
Open a web browser and navigate to http://www.sparkfun.com/FTDI. Follow the
instructions appropriate to your operating system.

Starting the Arduino IDE
From the Windows desktop, select Start>All
Programs>Arduino IDE. An initial screen
identifying the software will, appear, followed
automatically by a new “sketch” (program).
At this point, we are ready to begin writing
our first program.

Programming Arduino—Line Outputs

Introduction
The first program we will write will perform
the following functions in the sequence
outlined below:

• Turn an LED on for 1 second
• Turn an LED off for 1 second
• repeat sequence

Arduino IDE Syntax
The Arduino utilizes a text based programming technique. It is therefore necessary to
learn some basic grammar rules, known in programming as “syntax,” in order to
successfully write a program. If our syntax in a program is incorrect, the device will not
know how to interpret our commands.

In the open sketch, you’ll notice that the IDE has started us off with two commands,
called “functions”: void setup() and void loop(). Each of these is followed by a set of
“curly braces” that look like this: { }. Curly braces act similarly to a new paragraph in
English writing, telling the program that a new set of instructions resides inside the curly
braces. How that set of instructions is run depends on the function which corresponds to
the curly braces. For example, the “setup()” function tells the RedBoard that the set of
instructions inside the curly braces is to be run once, and once only. The “loop()”
function tells the device that the set of instructions inside the curly braces is to be run
repeatedly in a never-ending loop. Inside the curly braces, each line of code that you
write must end with a semicolon (;). This acts much like a period in English, separating
one line of instruction from the next.

You’ll also see what’s called a “comment” that looks like this: “// put your setup code
here, to run once”. A comment is anything in a line that follows //, and the RedBoard
device will simply skip over that line. Comments are used by the programmer to remind
himself or herself what different parts of the program are doing. We can write anything
in a comment for our own benefit, and the device will simply ignore it.

For now, this is all the syntax we need to know. We’ll learn additional rules as they
come up.

Defining Variables: Integer Variables (int)
The first step in writing our program is to define names for things we will be using in our
program. To do this we use the text “int”, which is short for “integer.” The int command
assigns a “variable” (a name we define) to an integer “value” (a whole number, positive,
negative, or zero). In this case, we’ll use the name “LED_pin” as the name for the digital
output we are programming. We could use any name such as “x” or “y,” but since we
will be turning an LED on and off, LED_pin makes sense, so we’ll use that. Establishing
an integer variable also means that we assign the name we’ve chosen to a specific integer
value.

In this case, the integer value will correspond to the digital channel we are programming.
Digital pin 13 on the RedBoard device is internally connected to an LED located near the
right-hand side of the board. When Pin 13 is turned on, the LED will also turn on. So,
since we want to control the LED, we will assign our variable name to digital pin 13.
Defining variables comes before the program actually starts, so we’ll write our code
before the void setup() command.

Syntax:
int var = val;

Parameters:
Var: variable, the name you
are defining for the integer value

val: value, the integer value
(…-1,0,1,2…) you are naming

Code to write:
int LED_pin = 13;

This code you have just written
created a new integer variable
named “LED_pin” and assigned
it the value of 13, which will
correspond to digital pin 13
which is connected to an LED
on the RedBoard device.

Initializing DIO Pins: setup() and pinMode()

The first function in our sketch will be the setup() function. A function is simply a type
of procedure or routine which the device will follow. The setup() function is initiated
when the sketch starts, and runs only once at the beginning of the program. In our new
sketch, the setup() function is already in place, and looks something like this:

void setup() {

}

We will use the setup() function to assign the variable “LED_pin” to pin 13 as an output.
To do this, we will use the pinMode() function. pinMode() simply calls out a variable
that we have already defined and then assigns that variable as an input or an output. This
function is what attaches our new variable to pin 13, rather than just assigning it a
numerical value of 13. We will place this function inside the curly brackets, since it is
part of the setup function and only needs to run once.

Syntax:
pinMode(var, mode);

Parameters:
var: variable name assigned to
the numeric value of the pin
whose mode you wish to set

mode: INPUT, OUTPUT, or
INPUT_PULLUP, sets the
mode of the pin

Code to Write:
pinMode(LED_pin,
OUTPUT);

At this point, we have created a
variable called “LED_pin,” and
assigned it to digital pin 13 as a

digital output.

Programming a Loop: loop()
The next step in creating our sketch is to program a loop. A loop function simply tells
the device to run the set of functions inside the curly brackets in order until it reaches the
end of the loop, and then to start over again at the beginning of the functions inside the
curly brackets. In this way, we can create a program which runs continuously as long as

the device has power. In our sketch, the loop function should already be in place by
default, so we just need to add functions inside the curly brackets.

Turning on an output: digitalWrite()
In order to get some action out of our digital output pin, we need to tell it to do
something. This is done by using the digitalWrite() function. This function “writes” a
value of HIGH (on) or LOW (off) to a specific digital output pin. Writing a value of
“HIGH” to LED_pin will cause Pin 13 to turn on, and also cause the connected LED to
turn on. We want this to happen as part of our loop, so we’ll write this part of our code
inside the curly brackets following the loop() function.

Syntax:
digitalWrite(var,
value)

Parameters:
var: variable name of the pin
you wish to turn on or off.

value: HIGH or LOW
(HIGH = 5V DC, LOW = 0V
DC)

Code to Write:
digitalWrite(LED_pin,
HIGH);

This will turn the LED_pin on,
applying 5 volts to digital pin
13, lighting the internally
connected LED.

Programming a Delay: delay()
Next, we want to tell the device how long to keep our LED lit. We can do this using a
delay() function. A delay simply tells the device to wait for a specified amount of time
before moving on to the next line of code. The time is measured in milliseconds (ms), so
for our one second delay we will use a value of 1000 ms.

Syntax:
delay(milliseconds)

Parameters:
milliseconds: the number
of milliseconds to pause, e.g.
500 ms for ½ second.

Code to Write:
delay(1000);

This will cause the program to
pause for 1 second while the
LED is lit.

Next, use digitalWrite function
to turn LED_pin off. Following
the 1 second delay, program a
digitalWrite function to turn the
LED_pin LOW. Then program
a delay function to wait an
additional 1 second while the
LED is off.

At this point, the program will
run each step in the loop in
sequence until it reaches the end
of the loop() function, at which
point it will start over at the
beginning of the loop() function.
This will result in the LED
blinking on and off at 1 second
intervals for as long as the
RedBoard device has power
connected to it.

Verify and Upload
Now we need to compile our
code and check for errors. We
do this by clicking the “Verify”
button, which looks like a green
checkmark in the top left corner
of the Arduino IDE window.
The IDE will then check your
sketch for errors, and compile
the program. Compiling means
that the IDE is converting your
program into a lower-level form
in which the RedBoard can
execute the program. If your
program has errors, you will get
an error message and the errors
will be displayed in red at the
bottom of your window.
Common errors include missing
semicolons, misplaced curly
brackets/parentheses, and
incorrectly formatted functions.
If you have errors, check your sketch thoroughly to ensure it looks like that shown in the

image. The IDE will also
provide helpful hints in red text
at the bottom of your screen,
and highlight the line of code
which has the error.

Once you have verified the
sketch, make sure the RedBoard
is connected to your computer
via USB cable, and then click
the “Upload” button, which
looks like an arrow next to the
“Verify” button in the top left
corner of your window. You
should see blinking lights on the
RedBoard which show that the
program is being uploaded from
the PC to the device. If there is
an error on the upload, go to the
“Tools” menu at the top of the

window, select “Port: COM__”, and then choose a different COM port. You may have to
try a couple of different ports to get the right one. Once the upload is complete,
RedBoard will immediately begin running the program, so you should see a blue LED on
the device blinking on for 1 second and off for 1 second repeatedly. If not, check your
program to make sure that you followed the instructions exactly.

Finishing the Program
Now that we have tested our program and verified that it is working correctly, modify the
sketch to complete the sequence shown near the beginning of this activity. To do this, all
you should need to do is change the number of milliseconds in your delay functions.

• Turn the LED on for 2 seconds
• Turn the LED off for 3 seconds
• repeat sequence

When you are finished, have your teacher check your program to make sure it works
correctly.

Team Assignment

As a team, write a program to control the solid state relay (connected to Pin 2) to control
a sprayer pump to turn on for 2 seconds every 5 minutes. When you have constructed
your aeroponic vertical garden, you will use this program to mist your plants’ roots. At
that point, you may need to adjust the misting schedule to promote the best plant growth.

